
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Passbolt Browser Extensions 04.2021
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi, BSc. T.-C. “Filedescriptor” Hong

Index
Introduction

Scope

Test Methodology

Audit of frontend JS code and Browser Extension vulnerabilities

Audit of utilized Cryptography and related Parts

Identified Vulnerabilities

PBL-02-001 Extension: canSuggestUrl might suggest TLD entries (Low)

Miscellaneous Issues

PBL-02-002 Web: Lack of CSRF protection on logout (Info)

Conclusions

Introduction
“The password manager your team was waiting for. Free, open source, self-hosted,
extensible, OpenPGP based.”

From https://www.passbolt.com/

This report describes the results of a comprehensive security assessment targeting the
Passbolt Browser Extensions for Chrome and Firefox. Carried out by Cure53 in April
2021, the project entailed both a penetration test and a dedicated source code audit of
the Passbolt extensions in scope.

To give some context, the work was requested by Passbolt SA in early March 2021 and
then scheduled for the following month. Note that this is the second review Cure53
conducted for Passbolt, hence the label PBL-02. The first cooperation in the security
realm was in February 2021 and can be found in the PBL-01.

Cure53, Berlin · 04/19/21 1/8

https://cure53.de/
https://www.passbolt.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The current project was assigned to a team of three senior testers who prepared,
executed and documented the examination. The core work was done in early April 2021,
namely in CW14, whereas the overall budget stood at eight person-days. To optimally
structure the work needed, two work packages (WPs) were delineated as follows:

• WP1: Penetration-Tests & Code Audits against Passbolt Chrome Extension
• WP2: Penetration-Tests & Code Audits against Passbolt Firefox Extension

Driven by the aim of acquiring breadth and depth of coverage, white-box methods were
used. Cure53 was given access to all relevant sources in an uncompressed form, as
well as browser extension builds for Chrome and Firefox. All preparations were done in
late March 2021, namely in CW13, so as to enable swift start and efficient progress.

Communications during the test were done using the Slack channel established and
used for PBL-01. Discussions were slim as the scope was well-prepared and clear. No
noteworthy roadblocks were encountered during the test. Just as in PBL-01, the
Passbolt team was extremely helpful and had a positive impact on the overall testing
process. Cure53 offered frequent status updates about the test and findings. Live-
reporting was not requested.

The Cure53 team managed to get very good coverage over the WP1-2 scope items.
Two discoveries were made. One item represents a security vulnerability with Low
impact score, and the other is a general weakness, also marked by little-to-no
exploitation potential. This is a very good result for the Passbolt team, which has
provenly managed to navigate around the usual issues spotted commonly in password
management browser extensions.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. Subsequently, a chapter
that sheds light on the test coverage reached by Cure53 is included to show what was
looked at despite no findings spotted. Next, both findings will be discussed. Alongside
technical descriptions, PoC and mitigation advice are supplied when applicable. Finally,
the report will close with broader conclusions about this April 2021 project. Cure53
elaborates on the general impressions and reiterates the verdict based on the testing
team’s observations and collected evidence. Tailored hardening recommendations for
the Passbolt complex are also incorporated into the final section.

Cure53, Berlin · 04/19/21 2/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• White-Box Penetration-Tests & Audits against Passbolt Browser Extension(s)

◦ WP1: Penetration-Tests & Code Audits against Passbolt Chrome Extension
▪ https://github.com/passbolt/passbolt_browser_extension/tree/master/dist/chrome

◦ WP2: Penetration-Tests & Code Audits against Passbolt Firefox Extension
▪ https://github.com/passbolt/passbolt_browser_extension/tree/master/dist/firefox

◦ Sources
▪ All relevant sources are available as OSS
▪ https://github.com/passbolt/passbolt_browser_extension

Test Methodology
This section briefly summarizes Cure53’s testing process in order to transparently
describe the overall coverage achieved in this pentest against the Passbolt Browser
Extensions. The following notes highlight steps taken to make sure it is understood
which sensitive areas were explored, as well as which security bug classes were
covered during this audit. The section begins with an analysis of the frontend JavaScript
code and later moves to security tests against the utilized cryptography and other parts
of the scope.

Audit of frontend JS code and Browser Extension vulnerabilities

• Cure53 examined the properties of the manifest.json file for Chrome and Firefox. Files
exposed in web_accessible_resources were checked to ensure they cannot be
leveraged as a Clickjacking vector. Although config-debug.html intended for
development use was found to be “embeddable”, generally all exposed HTML files are
handled correctly. They cannot be directly embedded as they require to be spawned
from the background script.

• Next, externally_connectable was confirmed to be disabled, which is correct because it
could allow websites to communicate with the extension. Similarly, content scripts are
not configured; instead, they are dynamically injected via tabs.executeScript which
provides more granular controls. Permissions were also checked to ensure unnecessary
items are not requested.

• Moving on, XSS possibilities in the extension were examined. Due to the use of the
React framework, most traditional XSS vectors have been eliminated. The remaining
vector, which is the misuse of dangerouslySetInnerHTML, was not found in the
codebase and deemed secure. It is worth noting that CSP was not relaxed, meaning that
even in the event of an XSS, exploitability would be very unlikely.

• In addition, XSS via the extension to websites was attempted. The code for injecting
username and password onto a page only ever interacts with the DOM provided by the

Cure53, Berlin · 04/19/21 3/8

https://cure53.de/
https://github.com/passbolt/passbolt_browser_extension
https://github.com/passbolt/passbolt_browser_extension/tree/master/dist/firefox
https://github.com/passbolt/passbolt_browser_extension/tree/master/dist/chrome
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

isolated content script context and did not create any additional elements. Hence, this is
considered a safe approach.

• Cure53 put emphasis on auditing the URL suggestion and insertion logic which are
critical for password managers. The fact that autofill and saving password after logging
in a web page were not supported significantly reduces the attack surface. DOM
Clobbering and iframe abuse were tested to see if they can confuse the extension, but
they are properly handled as well.

• All URLs to be validated go through normalization via the window.URL API which almost
guarantees no discrepancies or parser differentials. Different URL components are
correctly compared. IPv6 and different representation of IP (e.g. decimal) was also taken
care of, with the exception of hostnames without a dot which may potentially cause
confusion (see PBL-02-001).

• Finally, the communications between background script, content script and webpage
have been examined. Message interception or spoofing were not possible. API
interactions with Passbolt Cloud were also fine.

Audit of utilized Cryptography and related Parts

• Cure53 examined the properties attributed to the extension’s environment as it is loaded
into the Chrome and Firefox browsers. The importance of the correct contribution of
these attributes is accentuated by the fact that the application will be storing sensitive
cryptographic keys both locally and in memory.

• Passbolt implements a common OpenPGP interface through a collection of thoroughly
documented and well-specified JavaScript classes, linked to a set of models that then
construct a top-level React application. This common OpenPGP interface was checked
for sanity, with special focus on PGP payload parsing operations, key generation, key
management, key storage, passphrase management and storage, as well as batch
encryption and decryption functionality.

• Passbolt provides certain network functionalities that involve a protocol for information
exchange and authentication with a server. OpenPGP is used for the generation of
authorization tokens. This logic was checked for sanity and absence of potential replay
attacks or state machine-level attacks.

• The Passbolt extension offloads virtually all sensitive cryptographic operations onto the
low-level PGP layer. This leaves the extension with a relatively small attack surface. It is
rendered even smaller by the application’s strict adherence to the React application
discipline, with well-specified JavaScript modules all connected to the OpenPGP API.

• Finally, testing was conducted in order to verify the potential for user error resulting in
degraded security.

Cure53, Berlin · 04/19/21 4/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. PBL-02-001) for the purpose of facilitating any
future follow-up correspondence.

PBL-02-001 Extension: canSuggestUrl might suggest TLD entries (Low)

Passbolt suggests credentials based on the current tab’s URL. It does so by comparing
the URL’s protocol, hostname and port against a list of stored URLs. In addition, it also
compares if the current hostname is a subdomain of a stored URL.

Affected File:
all/data/js/quickaccess/popup/components/HomePage/canSuggestUrl.js

Affected Code:
// Otherwise check if the suggested url hostname is a parent host of the url
hostname.
 return isParentHostname(suggestedUrlObject.hostname, urlObject.hostname);

In the isParentHostname function, it returns true if parent appears at the end of child,
with a caveat that it has to follow a dot or nothing. While the validation is sound against
typical URL confusion attacks, there are two scenarios that this check misses.

The first one is when a user has a stored entry on an Intranet address. For example, if
the user stores credentials for https://email pointing to the company’s email system, then
Passbolt will suggest that entry when the user visits something like https://titan.email/
because it has the same gTLD.

The second scenario is that some TLDs are directly accessible from the Internet at the
root level. This can be seen in http://ai/ (works on MacOS). If a user stores credentials
on these websites, the same thing will happen.

Although these are edge cases, it is recommended to consider not to suggest entries
when the current URL does not contain a dot. A full origin matching should be performed
in this case.

Cure53, Berlin · 04/19/21 5/8

https://cure53.de/
http://ai/
https://titan.email/
http://email/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

PBL-02-002 Web: Lack of CSRF protection on logout (Info)

It was found that the logout endpoint for Passbolt Cloud does not have a CSRF
protection. If a login endpoint was also vulnerable to CSRF, then an attacker would be
able to chain the flaws together. In effect, whenever a victim created a new password
entry, it would be stored on the attacker’s account instead. For now it can only cause
annoyance to users.

Steps to reproduce:
1. Be logged into Passbolt Cloud
2. Navigate to https://cloud.passbolt.com/$namespace/auth/logout.json
3. You will be logged out

Alternatively, the logout URL can be embedded in a tag for stealthiness. It is
recommended to implement a CSRF protection on the affected endpoint as a defense-
in-depth mechanism.

Cure53, Berlin · 04/19/21 6/8

https://cure53.de/
https://cloud.passbolt.com/$namespace/auth/logout.json
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
As noted in the Introduction, the Passbolt team has mastered the topics of security and
privacy in both their Chrome and Firefox browser extensions. After dedicating eight days
to testing in April 2021, three members of the Cure53 team only spotted flaws that would
have low-relevance and/or seem very hard to exploit. It must be emphasized that this is
by no means a typical result. In fact, the attack surface of projects in the Passbolt’s
realm of operations is usually quite large, given what and how the extensions in scope
promise and deliver in terms of security. In the case of the Passbolt Browser Extensions,
the risks associated with malicious websites confusing the extension and exploiting them
have been largely mitigated.

To first comment on cryptography, the Passbolt extension’s crypto-architecture
comprises a comprehensive wrapper around OpenPGP, built as a set of classes that
constitute models for a top-level React application. The OpenPGP wrapper was found to
be highly comprehensive, well-specified, properly deployed with a uniform and
consistent implementation strategy. All those properties further reduced the attack
surface, which was already small due to the chosen cryptographic architecture.

The extensions are loaded into the Chrome and Firefox browsers with correct
sandboxing and permission-handling. The Passbolt’s network calls for client-server
operations were equally well-specified and relied on OpenPGP for low-level
cryptographic operations, once more reducing possibilities for vulnerabilities. Despite a
thorough review, no cryptographic vulnerabilities could be spotted in the Passbolt
Browser Extensions.

Moving on to extensions themselves and the related JavaScript, it should be clarified
that the WebExtension audit started with checking the manifest.json for both Chrome
and Firefox versions. Files exposed via web_accessible_resources were checked to see
if they can be abused (e.g. via Clickjacking). The handling was found secure as all
HTML files require injections through the background script.

Other properties, namedly externally_connectable, content_scripts, permissions were
also checked. Cure53 documented that these either have not enabled or can be
considered safe. XSS in and via the extension was attempted but the use of the React
framework for the UI eliminates a vast collection of XSS vectors. The misuse of
dangerouslySetInnerHTML was not found in the code and, hence, no XSS in the
extension was spotted. Similarly, the content script does not inject additional DOM
elements other than simulating cursor and keyboard events. In that sense, no XSS via
the extension was possible.

Cure53, Berlin · 04/19/21 7/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The main focus was put towards examining the URL suggestion and inserting logic.
Thanks to not supporting auto-fill and password saving in web pages, many attacks were
fended off by default. Regarding URL suggestion, URL validation was checked and it
correctly handles various URL quirks involving IP addresses. However, under certain
circumstances, it could be tricked to suggest credentials stored for other websites (see
PBL-02-001).

Other possible attack vectors like DOM Clobbering and iframes of different origins were
checked but no issues were found. Finally, the communication between the background
script, content script and the webpage was confirmed as safe. Messages are immutable,
remaining safe when it comes to interception or spoofing. API interactions with Passbolt
Cloud are also fine.

All in all, Passbolt WebExtension gives a good impression in terms of both code quality
and security. Similarly positive verdict can be maintained for the implementation of the
already audited cryptography. The Passbolt extension stands strong and the audit and
pentest did not manage to unveil any serious severity bugs, whereas the overall number
of problems is also limited to just two minor flaws. This is a very good result, especially
after a rather high number of findings exposed in PBL-01. It is apparent that the
development team has a good grasp of both the web and browser security and
cryptography. This comes as no surprise given the vast experience they have gained
through past projects. From the perspective of security and privacy, Passbolt can be
judged as a praiseworthy, production-ready browser extension.

Cure53 would like to thank Remy Bertot and Thomas Oberndörfer as well as the rest of
the Passbolt team for their excellent project coordination, support and assistance, both
before and during this assignment.

Cure53, Berlin · 04/19/21 8/8

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Passbolt Browser Extensions 04.2021
	Index
	Introduction
	Scope
	Test Methodology
	Audit of frontend JS code and Browser Extension vulnerabilities
	Audit of utilized Cryptography and related Parts

	Identified Vulnerabilities
	PBL-02-001 Extension: canSuggestUrl might suggest TLD entries (Low)

	Miscellaneous Issues
	PBL-02-002 Web: Lack of CSRF protection on logout (Info)

	Conclusions

