
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Passbolt Extension Integration 08.2021
Cure53, Dr.-Ing. M. Heiderich, MSc. J. Moritz

Index
Introduction

Scope

Test Methodology

Audit of the browser integration feature of the Browser Extensions

Audit of the password-generator feature of the Browser Extensions

Identified Vulnerabilities

PBL-05-001 WP1/2: Incorrect entropy calculation when using emojis (Low)

PBL-05-003 WP1/2: Incorrect password generation when using emojis (Low)

Miscellaneous Issues

PBL-05-002 WP1/2: Autofill feature always completes first password field (Info)

PBL-05-004 WP1/2: Web-accessible resources allow user fingerprinting (Info)

PBL-05-005 WP1/2: Absence of curly braces in parentheses mask (Info)

Conclusions

Introduction
“The password manager your team was waiting for. Free, open source, self-hosted,
extensible, OpenPGP based.”

From https://www.passbolt.com/

This report - entitled PBL-05 - details the scope, results, and conclusory summaries of a
penetration test and security assessment against the Passbolt Browser Extension with a
particular focus on the Browser Integration & WebExtension API usage.

Note pertinently that both the Chrome and Firefox versions of the Passbolt browser
extension itself, as well as the crypto they employ, were subject to audit by the Cure53
team back in April 2021. As mentioned previously, the scope here had a considerably
greater focus than that which was documented via the PBL-02 report earlier this year.

Cure53, Berlin · 09/02/21 1/13

https://cure53.de/
https://www.passbolt.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The work was requested by Passbolt SA in mid-June 2021 and conducted by Cure53 in
mid-late August, namely in CW34. A total of two-and-a-half days were invested to reach
the coverage expected for this project. The testing conducted for PBL-05 was divided
into two separate work packages (WPs) for execution efficiency, as follows:

• WP1: Penetration-Tests & Code Audits against Passbolt Chrome Extension
• WP2: Penetration-Tests & Code Audits against Passbolt Firefox Extension

Cure53 was granted access to all sources, builds and a plethora of detailed test-
supporting documentation. As has become customary for all engagements between
Passbolt and Cure53, the methodology chosen here was white-box. A team of two
senior Cure53 testers was assigned to this project’s preparation, testing, audit execution,
and finalization.

All preparations were completed in mid-August, namely in late CW33 and early CW34,
to ensure that the testing phase could proceed without hindrance. Preparatory actions
were conducted efficiently as usual, whilst one can denote that no noteworthy blockers
or hindering factors were recorded during this or the subsequent testing phase. Passbolt
delivered excellent test preparation and assisted the Cure53 team in every respect to
procure maximum coverage and depth levels for this exercise.

Communications were facilitated via the dedicated, shared Slack channel that was
initially deployed to combine the workspaces of Passbolt and Cure53, allowing an
optimal collaborative working environment to flourish. Cure53 gave frequent status
updates concerning the test and any related findings, whilst simultaneously offering
prompt queries and receiving efficient, effective answers from the Passbolt team. Live
reporting was not requested, which in hindsight proved a sufficient decision considering
the low volume and minor severity of the findings detected.

With regards to the findings in particular, the Cure53 team procured comprehensive
coverage over the WP1 and WP2 scope items, identifying a total of five. Two of these
findings were categorized as security vulnerabilities, whilst three were deemed general
weaknesses with lower exploitation potential. This is undoubtedly an excellent outcome.
Furthermore, these results simultaneously reiterate and reconfirm the positive
impressions garnered for PBL-02 concerning the security posture of the browser
extensions in scope, and stand as testament to the quality of the integration scrutinized
here. Only two issues were detected previously, both of Low and Informational severity
levels. Here, the volume of findings saw a slight increase, though positively the severity
levels also reside in the realm of Low and Informational severity bugs. All in all, one
should consider this another fantastic result for the Passbolt browser extension scope.

Cure53, Berlin · 09/02/21 2/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. This will be followed by a chapter
dedicated to the test coverage and methodology, in which Cure53 will detail which areas
of the code were assessed and via which means, despite the fact that no issues were
detected in a given area. This serves to deliver full transparency on the test depth and
coverage.

Subsequently, the report will list all findings identified in chronological order. Each finding
will be accompanied by a technical description and Proof of Concepts (PoCs) where
applicable, plus any relevant mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the Passbolt
Browser Extension - with a particular focus on the Browser Integration & WebExtension
API usage - giving high-level hardening advice where applicable.

Cure53, Berlin · 09/02/21 3/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• White-box penetration tests and audits against Passbolt Ext. Browser Integration

◦ WP1: Penetration-Tests & Code Audits against Passbolt Chrome Extension
▪ https://github.com/passbolt/passbolt_browser_extension/tree/develop
▪ Revision in scope:

• v3.3.0-alpha.1
▪ Inspected commit:

• cd94daf951437ed82f56bb471b40b40c4b4f6311
◦ WP2: Penetration-Tests & Code Audits against Passbolt Firefox Extension

▪ See above, both extension builds utilize the same codebase
◦ Test-supporting material was shared with Cure53

▪ Risk Analysis Documentation (audit-relevant content on page 52)
• https://docs.google.com/document/d/

1W2KcVKOIo8YhpQpi2JbAcDT_dxWWmcJQrkrR0Y81Tls/
edit#heading=h.8dt4zpvb96x8

◦ All relevant sources were shared with Cure53
▪ https://github.com/passbolt/passbolt_browser_extension/tree/develop
▪ https://github.com/passbolt/passbolt_styleguide/tree/develop
▪ https://bitbucket.org/passbolt_pro/passbolt_pro_api/src/develop/

Cure53, Berlin · 09/02/21 4/13

https://cure53.de/
https://bitbucket.org/passbolt_pro/passbolt_pro_api/src/develop/
https://github.com/passbolt/passbolt_styleguide/tree/develop
https://github.com/passbolt/passbolt_browser_extension/tree/develop
https://docs.google.com/document/d/1W2KcVKOIo8YhpQpi2JbAcDT_dxWWmcJQrkrR0Y81Tls/edit#heading=h.8dt4zpvb96x8
https://docs.google.com/document/d/1W2KcVKOIo8YhpQpi2JbAcDT_dxWWmcJQrkrR0Y81Tls/edit#heading=h.8dt4zpvb96x8
https://docs.google.com/document/d/1W2KcVKOIo8YhpQpi2JbAcDT_dxWWmcJQrkrR0Y81Tls/edit#heading=h.8dt4zpvb96x8
https://github.com/passbolt/passbolt_browser_extension/tree/develop
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Test Methodology
This section briefly summarizes Cure53’s testing process in order to transparently detail
the overall coverage achieved in this pentest against the Passbolt browser extensions.
The following notes highlight steps taken to ensure clearer understanding of the
sensitive areas explored, as well as towards the coverage of the security bug classes
performed during this audit. The section commences with the analysis of the browser
integration feature and concludes with descriptive actions concerning security tests
against the password generation feature.

Audit of the browser integration feature of the Browser Extensions

• Cure53 initiated proceedings by examining the configuration of the manifest.json. The
verification was made that the externally_connectable property was disabled, which
prevents communication between the extension and malicious websites. Additionally,
the content scripts were reviewed to ascertain whether they allow for message relay
from the webpage context to the backend pages. One can confirm that this was not the
case and that security best practices were implemented well in this instance.

• Next, the web accessible resources were checked. The discovery was made that various
resources were exposed by the extension, which allows malicious users to determine
whether any user has the Passbolt extension installed (see ticket PBL-05-004 for more
details).

• Heightened scrutiny was placed toward the potential for XSS exploits within the
extension itself, as well as in the injected webpage iframes. Testing confirmed that user
input was correctly escaped at all identified places. One can also confirm that proper
usage of the React.js framework contributes to this outcome in addition. Furthermore, no
active usages of security-sensitive functions such as innerHTML, eval or document.write
as well as dangerouslySetInnerHTML were found.

• Moreover, the autofill feature was examined with care. Testing confirmed that the ability
to autofill passwords across origin boundaries was impossible. The existing
canSuggestUrl function was found to be resilient against attacks of this nature. Only one
non-security relevant issue was unearthed, which could lead to credential autofill into
different forms if a webpage contains more than one login (see PBL-05-002).

Cure53, Berlin · 09/02/21 5/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Audit of the password-generator feature of the Browser Extensions

• Furthermore, the password generation feature was subject to intense investigation. The
verification was made that a cryptographically-sound PRNG was deployed to generate
random values for the password-generation process. A minor issue was found that can
lead to an incorrectly-generated password when enabling the emoji mask (see PBL-05-
003).

• Subsequently, the entropy calculation was reviewed. A flaw was found in the length
calculation of strings that contained emojis (see PBL-05-001). This flaw resulted in a
displayed entropy which was significantly higher than the actual entropy.

• In addition, a secure default length for passwords and passphrases was observed.
• Besides this, the character classes were reviewed to ascertain whether they match the

characters claimed on the label. This revealed that curly braces are not added to
passwords if the parenthesis mask is selected, as detailed via PBL-05-005.

Cure53, Berlin · 09/02/21 6/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. PBL-05-001) for the purpose of facilitating any
future follow-up correspondence.

PBL-05-001 WP1/2: Incorrect entropy calculation when using emojis (Low)

The discovery was made that the password generator calculates the incorrect entropy of
a password if emojis are added to the permitted character classes. Since the
implementation of the generator calculates 10 passwords and returns that with the
seemingly highest entropy, a weaker password could be preferred to a stronger one.

The screenshot below displays a randomly-generated password containing eight emojis
with a claimed entropy of 125.3 bits. The configured emoji mask contains 115 different
emojis. The actual entropy of a password with length 8 and a mask size of 115 can be
calculated with Math.log2(Math.pow(115,8)) == 54.8. This significant difference gives
Passbolt users a false sense of security with regards to their passwords and emoji
usage.

Fig.: Incorrectly calculated entropy with emojis in password.

Cure53, Berlin · 09/02/21 7/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

This incorrect calculation is caused by the usage of the length property of a string in
combination with emojis. Since the length property returns the string length in UTF-16
code units, a single emoji can have a string length of 2 or more.

Affected file:
passbolt_styleguide/src/shared/lib/SecretGenerator/SecretGeneratorComplexity.js

Affected code:
const MASKS = [
 [...]
 {

"name": "emoji",
"label": ","😘",
"characters": 🤣🥲☺️😊😇[...]" 🤣🥲☺️😊😇[...]"☺ 🤣🥲☺️😊😇[...]" 🤣🥲☺️😊😇[...]" [...]""😀😃😄😁😆😅😂☺�️�😇[...]" 😂🤣🥲☺️😊😇[...]"

 }];

export const SecretGeneratorComplexity = {
 entropyPassword : (password = '') => {

let maskSize = 0;
let useMask = false;
const passwordCharacters = password.split('');
for (const mask of MASKS) {

 useMask = passwordCharacters.some(character =>
mask.characters.includes(''+character));
 if (useMask) {
 maskSize += mask.characters.length;
 }

}
return calculEntropy(password.length, maskSize);

 }

Calculating the length of an emoji can be a cumbersome process. A user-perceived
emoji can be assembled from two UTF-16 code units, also referred to as surrogate pairs.
However, a user-perceived emoji can also be represented by a sequence of code points
or emojis (also known as a grapheme cluster1). For a more sufficient calculation of the
entropy, one can therefore recommend enumerating the volume of grapheme clusters
within the password and the mask.

1 https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

Cure53, Berlin · 09/02/21 8/13

https://cure53.de/
https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PBL-05-003 WP1/2: Incorrect password generation when using emojis (Low)

While reviewing the password generation process, the observation was made that an
incorrect password could be generated in the eventuality that an emoji mask is enabled.
More specifically, the password-generation process fails to divide the string of emojis
into correct units which can result in non-printable Unicode characters within the
password.

The screenshot below displays the password generator configured with a password
length of eight characters. However, the generated password in the corresponding field
only contains seven printable characters.

Fig.: Incorrect password length.

Since the spread syntax ([...iterableObj]) splits a string into UTF-16 code points, an emoji
assembled out of two or more code points will be disassembled accordingly. This is the
case for the emojis ☺ (U+263A U+FE0F) and (U+2639 U+FE0F). For this reason, the☹️
non-printable variation selector code point U+FE0F can be inserted into the password
with a higher possibility than alternative characters or code points. This scenario is
illustrated in the screenshot above, in which the password consists of seven printable
code points and the variation selector.

Affected file:
passbolt_styleguide/src/shared/lib/SecretGenerator/PasswordGenerator.js

Cure53, Berlin · 09/02/21 9/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
const availableMasks = configuration.masks.filter(mask => mask.active);
[...]
// Build the mask to use to generate a secret.
mask = availableMasks.reduce((mask, currentMask) =>
[...mask, ...currentMask.characters], []);

In order to resolve this flaw, one can recommend dividing the mask into grapheme
clusters2 or to remove emojis with more than one code point. These measures would
result in a generated password that contains only user-perceived characters or code
points.

2 https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

Cure53, Berlin · 09/02/21 10/13

https://cure53.de/
https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

PBL-05-002 WP1/2: Autofill feature always completes first password field (Info)

Testing confirmed that the Autofill feature always fills the first password field of a login
page. In any eventuality whereby a website contains multiple login forms - for example,
an admin login and a user login - this could introduce unnecessary risk. Specifically, this
can result in a password automatically filled into one form and the username into another
form. Whilst a direct security impact could not be identified, this issue could have
negative repercussions for the user experience.

Affected file:
passbolt_styleguide/src/react-web-integration/Autofill/Autofill.js

Affected code:
const findInputElementInIframe = function (type, iframeDocument) {
 let inputElement = null;
 if (type === 'password') {

inputElement = iframeDocument.querySelectorAll(PASSWORD_INPUT_SELECTOR);
// Password element has been found.
if (inputElement.length) {

 return inputElement[0];
}

To mitigate this issue, one can recommend binding the password and username fields to
the corresponding HTML forms. With regards to multiple login fields, the username-
password tuple would not be split across forms.

Cure53, Berlin · 09/02/21 11/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PBL-05-004 WP1/2: Web-accessible resources allow user fingerprinting (Info)

The discovery was made that the exposed web-accessible resources can be abused by
an attacker to determine whether a user has installed the Passbolt extension. This
information could aid an attacker in their efforts to further exploit the platform and the
user in question.

In order to reproduce this issue, the attacker is required to lure a victim onto an attacker-
controlled website. This page contains a reference to one of the exposed resources as
illustrated in the code displayed below. In this situation, a notification would be delivered
to the attacker if the resource is successfully loaded.

PoC HTML:
<img src="chrome-extension://lkjbabiilpomnghkpidonoebnbooponb/data/img1/logo/
icon-16.png" onload="attacker.send(This is a Passbolt User')">

It is recommended to reduce the exposed web-accessible resources as much as
possible in order to mitigate the risk of user fingerprinting.

PBL-05-005 WP1/2: Absence of curly braces in parentheses mask (Info)

Testing confirmed that the pre-configured password mask parenthesis does not include
curly braces as claimed on the label. The fact that passwords will never contain curly
braces could give the end user a false sense of security.

Affected file:
passbolt_browser_extension/src/all/background_page/model/passwordGenerator/
passwordGeneratorModel.js

Affected code:
[...]
 {
 "name": "parenthesis",
 "label": "{ [(|)]] }",
 "characters": "([|])",
 "active": true
 },

It is recommended to either add curly braces to the character set or to remove the
missing characters from the label.

Cure53, Berlin · 09/02/21 12/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW34 testing against the Passbolt Browser Extension, with a
particular focus on the Browser Integration & WebExtension API usage - will now be
discussed at length. To summarize, the confirmation can be made that the extensions
under scrutiny have left a positive impression.

The primary objective of the audit pertained to review forthcoming features of Passbolt’s
Firefox and Chrome browser extensions, such as the browser integration and the
password generator. Both extensions share the same code base for the most part, which
enabled an optimum testing environment.

Starting with the browser-integration, this feature offers the functionality of auto-filling
credentials into the login form of user-visited pages. This functionality was examined
carefully with regards to XSS vectors. The injected iframes, which are deployed to
display Passbolt's user controls and options on the web pages, escaped user input at all
identified places. This owed to the correct implementation of the ReactJS framework in
particular.

The process of auto-filling across origin borders was also thoroughly reviewed. Testing
confirmed that the existing URL suggestion logic is resilient against attacks whereby an
attacker prompts a user to autofill credentials into the dummy page. Only two issues
without a direct security impact were identified in this area, which are covered in more
detail via tickets PBL-05-002 and PBL-05-004. These issues could lead to confusion with
username and password fields in any instance whereby a page contains multiple login
forms or allows for user fingerprinting. Moving to the password generator, this feature
generally made a solid impression. The utilized PRNG is considered cryptographically
secure for generating random values. However, two minor issues were identified when
enabling the emoji mask. This could lead to an incorrectly generated password (see
PBL-05-003) or an inarticulately-calculated entropy (see PBL-005-001) which would give
the user a false sense of security. This demonstrates that there is room for minor
improvements when handling strings containing unicode.

All in all, the applications in focus made an indisputably excellent impression with no
potentially-damaging vulnerabilities detected during this report. Once the findings listed
in this report are addressed, the extension should be ready for production rollout..

Cure53 would like to thank Remy Bertot, Cedric Alfonsi and Max Zanardo from the
Passbolt SA team for their excellent project coordination, support and assistance, both
before and during this assignment.

Cure53, Berlin · 09/02/21 13/13

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Passbolt Extension Integration 08.2021
	Index
	Introduction
	Scope
	Test Methodology
	Audit of the browser integration feature of the Browser Extensions
	Audit of the password-generator feature of the Browser Extensions

	Identified Vulnerabilities
	PBL-05-001 WP1/2: Incorrect entropy calculation when using emojis (Low)
	PBL-05-003 WP1/2: Incorrect password generation when using emojis (Low)

	Miscellaneous Issues
	PBL-05-002 WP1/2: Autofill feature always completes first password field (Info)
	PBL-05-004 WP1/2: Web-accessible resources allow user fingerprinting (Info)
	PBL-05-005 WP1/2: Absence of curly braces in parentheses mask (Info)

	Conclusions

